
	 1

Probabilistic Language-Agnostic Word Segmentation

Alex King
Tufts University

May 2016

Abstract

Accurate segmentation of text without spaces is an important task in natural language
processing, particularly for languages written without spaces such as Chinese. We exhibit
a dynamic programming algorithm to efficiently compute multiple segmentations of text,
storing the best sub-segmentation at each step. We measure multiple metrics of assessing
segmentation quality, finding that a unigram language model with Laplace smoothing
slightly outperforms a bigram language model with linear interpolation smoothing. Using
an English corpus of ~4 million tokens, we achieve an F-score of 99.25, segmenting over
90% of sentences perfectly, with French and Turkish models performing nearly as well.
This performance is significantly stronger than the baseline maximum matching approach.

Introduction and Background

In natural language processing, word segmentation is the
process of breaking up a string of characters representing
a phrase or sentence (“thetabledownthere”) into its
proper constituent words or tokens (“the table down
there”). For many eastern languages such as Chinese,
which are written without spaces, efficient and accurate
word segmentation is paramount for correct processing
later in the pipeline. Word segmentation is not
traditionally necessary in processing space-delimited
languages like English; however, the process is becoming
more applicable to all languages, with smartphone
keyboard autocorrect becoming tolerant to strings of
words typed without spaces. Word segmentation is
generally easy for humans to do by eye, but it poses
multiple challenges for computers. Exhaustive
segmentation is extremely memory and time inefficient,
as there are 2n-1 segmentations for any given string of n
characters. In this paper, we exhibit a word segmentation
algorithm that takes advantage of a probabilistic language
model and dynamic programming to efficiently compute
the most likely segmentation of a sentence.

																																																								
1 "Leipzig Corpora Collection Download Page." Wortschatz.

Leipzig University, n.d. Web. 05 May 2016.

Datasets Utilized

Supervised word segmentation performance is extremely
sensitive to the data provided. To that end, we sought to
use large segmented sentence-based corpora so that n-
gram models could be generated as necessary.
Unfortunately, it was challenging to find accessible large
segmented corpora of unsegmented languages such as
Chinese and Japanese. The largest segmented Chinese
corpus easily accessed was roughly 10,000 sentences
long, which is not large enough to build a strong
probabilistic model of a language. Instead, this project
focused on building a language-agnostic framework that
could build a model for any language when given a
properly segmented corpus. The Leipzig Corpora
Collection1 was found to be the best resource for this,
offering sentence-based corpora scraped from news
websites and Wikipedia in over a dozen languages.

English was used as a test language, utilizing a corpus of
roughly 300,000 sentences. Sentences were tokenized
using the Natural Language Toolkit (NLTK)
word_tokenizer function. French and Turkish were
informally tested afterwards, achieving very similar
results to English. Sentences directly from the corpus
acted as “ground truth” segmented sentences. Sentences

	 2

had spaces removed before being passed to the
segmentation algorithm. The corpus comes alphabetized,
but it was shuffled before being partitioned into training
and test segments.

Here is one example sentence from the English corpus:
“Mention must be made of bass-baritone Nicolas Testé’s
superbly robust singing as Raimondo, here portrayed as
a spiritual advisor to Enrico Ashton.” This sentence
exhibits several proper nouns that will be cataloged by our
language model.

Baseline Algorithms

There are two straightforward mechanisms to segment
text that share considerable algorithmic similarity, but
differ greatly in performance. The maximum matching or
maxmatch algorithm reads a string of unsegmented text
with a pointer beginning at the end of the string, checking
if the current string is a word in the language’s dictionary.
If so, a space is inserted and the process is repeated. If not,
the pointer is moved to the left by one and the process is
repeated. If no word is found, a single character token is
created. In practice, this algorithm will always find the
longest word that can be made before inserting a space,
hence the name. Our example sentence
“thetabledownthere” would be segmented as “theta bled
own there”.

Minimum matching or minmatch works similarly, but
instead of starting the pointer at the end of the string, it is
started at the beginning. This always finds the shortest
word that can be made before inserting a space.
Maxmatch is a worthwhile baseline algorithm that
achieves moderately high precision and recall scores for
words. Minmatch, though very similar to maxmatch, does
not fare nearly as well. This is understandable given that
many prefixes of longer words are also words themselves;
our example sentence would be segmented as “the tab led
ow n the re”. For this project, maxmatch was used as the
baseline segmentation algorithm.

Our Method

Maxmatch’s beauty is in its convenience and speed: given
a dictionary of a language, maxmatch can segment text in
linear time with respect to the length of the input. It does
not rely on a precomputed model, so it can be
implemented and integrated quickly. However, its main
flaw is its greed: it always picks the longest word at each
opportunity, even when the longest word is extremely

																																																								
2 Kun, Jeremy. "Word Segmentation, or Makingsenseofthis."

Math ∩ Programming. N.p., 15 Jan. 2012. Web. 04 May
2016.

uncommon, throwing off the next word’s segmentation as
well. The “theta bled own there” example is one such
example in English, where “theta” is picked as the first
word of the sentence, even though it is many, many orders
of magnitude less common than the most common word
in English, “the”. It also faces a certain conundrum in its
definition of a dictionary: if it uses a dictionary defined
by a real-world corpus, it may mistakenly recognize
longer words than it should, because those words appear
as slang or casual compound words in the corpus.
Conversely, if it uses an official language dictionary, it
will not fare nearly as well at recognizing uncommon
proper nouns, affecting overall accuracy.

An ideal algorithm compares multiple segmentations of
the same text and picks the one that is considered the best.
However, this is not trivially accomplished; a given string
of n characters will have 2n-1 possible segmentations, so
runtime can grow to be O(2n) if implemented naively.
Dynamic programming can improve on this. If we can
define the segmentation problem such that an optimal
solution is composed of optimal solutions to subsets of the
original problem, we can store the solutions to the subsets
for use later in the algorithm. For this project, we used the
following recursive definition of the best segmentation of
string s, derived from a recursive algorithm described by
Jeremy Kun2:

This definition states that the best segmentation of a string
of length n will be the highest quality segmentation
among n choices. For example, for the short English string
“weare”, the best segmentation will be the highest quality
segmentation of the following:

• “w” | seg(“eare”)
• “we” | seg(“are”)
• “wea” | seg(“re”)
• “wear” | seg(“e”)
• “weare”

This definition relies on recursively calling the function
on substrings of the original. This is where the dynamic
programming algorithm helps: by iteratively calculating
the best segmentation of increasingly long substrings of s
and storing each one, the algorithm becomes polynomial
in runtime rather than exponential. In the case of
“weare”, the following steps would be taken to segment

	 3

the entire string. The bold selection indicates the highest
scoring segmentation, the measurement of which will be
discussed below.

1. seg(“e”) = “e”
2. seg(“re”) = “r | e”, “re”
3. seg(“are”) = “a | r | e”, “ar | e”, “are”
4. seg(“eare”) = “e | are”, “ea | r | e”, “ear | e”, “eare”
5. seg(“weare”) = “w | e | are”, “we | are”, “wea | r | e”,

“wear | e”, “weare”

The algorithm in Python is not much harder to read than
pseudocode, so the Python code is exhibited below.
Though the inspiration for this algorithm comes from
Jeremy Kun’s recursive segmentation algorithm, the
dynamic programming algorithm was implemented,
tested and tweaked independently.

def segment_string(string):

 length = len(string)
 table = [0 for i in range(length)]
 for row in range(length - 1, -1, -1):

 segment = string[row:length]

 segs =
 [[segment[:i+1]] +
 table[i + row + 1]
 for i in range(len(segment) - 1)]

 segs.append([segment])

 scores =
 [quality(sent)
 for sent in segs]

 table[row] =
 segs[scores.index(max(scores))]

 return table[0]

This algorithm allows us to efficiently compute many
different segmentations of a string, which offers promise
over maxmatch. However, its performance is completely
dictated by the performance of the quality function, the
function that tells us how good or how likely a given
segmentation is. To measure quality, we compared the
performance of two different probabilistic language
model structures: one smoothed with Laplace smoothing,
and another smoothed with linear interpolation.

Quality Method 1: Laplace-Smoothed Language
Model

An n-gram language model stores probabilities of
sequences of n words appearing in the language. Laplace
smoothing adds one (or a smaller constant) occurrence for
every n-gram in a language model, such that n-grams not
appearing in the corpus will not have a probability of zero,

but instead, a very small one. Some sort of smoothing for
unseen tokens is crucial, because without it, the quality
function cannot easily reconcile an unseen token: if it
chooses to include the zero probability, the probability of
an entire segmentation immediately goes to zero.
Conversely, if the probability is ignored, there is no
penalty for including a token that may very well be
uncommon, leading to poor segmentation behavior.

Unfortunately, using n-grams with n > 1 is not especially
practical for Laplace smoothing, as bigrams are extremely
sparse. Computing quality based on smoothed bigrams
exhibited very poor performance, because many bigrams
were never observed, so all quality scores were very low.
Because of this, we instead chose to use Laplace
smoothing on a unigram model, such that quality was
defined by the sum of log probabilities of each unigram in
the segmentation.

In tweaking the model, it was clear that the probability of
unknown tokens had to be reduced in two ways. First,
based on the size of the corpus and the size of the
languages they represented, counting each unseen token
as occurring once in the model was far too high of a
probability to achieve good results. Empirically, we were
able to change this count of 1 to a very small count of
10-40 and achieve better results. Second, the quality of a
very long unknown word needed to be penalized,
otherwise a long string of unknown characters would
often be considered better than a string of short,
segmented characters with probabilities compounded
together. Jeremy Kun’s article recommended penalizing
unknown tokens by their length, and we found that
penalizing all unknown tokens by dividing their (pre-log)
probability by 10len(s) achieved the desired effect.

Quality Method 2: Linear Interpolation-Smoothed
Language Model

We also evaluated quality using a bigram model
smoothed with linear interpolation. This method allows
us to take advantage of the richer data inherent in a bigram
model, but it fares better at smoothing than Laplace
smoothing, because any unseen bigram is instead judged
by the probability of its second unigram. We predicted
that this method would lead to stronger segmentation
accuracy, because the bigram model would be better at
discerning segmentation between neighboring words.
Lambda values for interpolation were calculated using the
deleted interpolation algorithm using a held out corpus.
The lambda values gave roughly 70% importance to
bigram probability and 30% importance to second-
unigram probability. Segmentation quality was defined
by the sum of log probabilities for each bigram in the
segmentation.

	 4

Algorithmic Complexity

Building a probabilistic model takes O(|C|) time, where
|C| is the corpus size in words. The segmentation
algorithm itself, on a string of length n, computes roughly
n segmentations of length n n times, where each
segmentation must have a quality calculated, taking O(n)
time. Therefore, the probabilistic dynamic programming
algorithm runs in O(n3) time. Though this is considerably
worse than maxmatch, sentence breaks are our friend.
Sentence length does not typically grow without bound,
so O(n3) performance on sentences of reasonable length
is plenty fast in practice.

Evaluation

To assess the quality of a segmented sentence, full
sentence segmentation accuracy was computed, along
with precision, recall, and F-score of individual words in
the sentence. Because it is very possible for long
sentences to have a single incorrectly segmented word or
word pair, full sentence accuracy is a much harder statistic
to bring up in value. However, precision, recall, and F-
score represent a fairer evaluation of the quality of
segmentation, representing roughly what percentage of
words are correctly segmented overall. Definitions of
precision and recall with respect to segmented sentences
were taken from “Bigram Chinese Word Segmentation by
Viterbi Algorithm” by Dan Lieu et al.3

Calculating precision and recall of a segmented sentence
based on ground truth data was a fun algorithm to build in
itself, and thankfully not unreasonably difficult or
inefficient. It’s necessary to measure how many words in
the ground truth sentence are correctly identified in the
segmented sentence, but it isn’t as easy as exhaustively
searching for presence; order and relative position matter.
Consider the following sentences:

Ground truth: The table down there

Segmented 1: Theta bled own there

Segmented 2: The tab led ow n the re

Comparing either of the machine-segmented sentences to
the ground truth sentence requires walking each sentence
in parallel, beginning at the first word, and seeing if the
most recently segmented words are the same, and that the
pointer for each sentence is at the same overall position in

																																																								
3 Liu, Dan, Weiguo Fang, Hong Zhou, and Yan Li. "Bigram

Chinese Word Segmentation by Viterbi Algorithm." 2009
Sixth International Conference on Fuzzy Systems and
Knowledge Discovery (2009): n. pag. Web. 4 May 2016.

each string. This algorithm was devised and implemented
independently and is documented in the
WordsCorrect function in the segmentation module.

Results

Results are summarized in the table below with the best
performances bolded. All measurements were taken with
a training corpus of 290,000 sentences and a test set of
5,000 sentences. M denotes the maxmatch algorithm, LI
denotes the linear interpolation-smoothed model, and LP
denotes the Laplace-smoothed model.

 Accuracy Precision Recall F-Score Time
(s)

M 18.68% 83.22% 78.54% 80.81 3.99
LI 84.98% 98.56% 98.94% 98.74 110.51
LP 90.16% 99.13% 99.37% 99.25 462.43

Maxmatch exhibited significantly poorer sentence
accuracy (18.68%) than the probabilistic methods, but its
precision and recall scores were acceptable, with an F-
score of over 80. This demonstrates that accuracy
improves in a delayed fashion relative to precision and
recall. Maxmatch’s main advantage is that it runs over 25
times faster than the linear interpolation method and over
100 times faster than the Laplace method. This was
expected; it is not only a linear time algorithm, but it
avoids the numerical operations inherent in probabilistic
comparison. This also would explain why Laplace
smoothing is considerably slower than linear
interpolation; Laplace smoothing, with its penalization of
long length, computes more numbers with time-intensive
exponent and division operations.

Laplace smoothing and linear interpolation both
demonstrated very similar performance curves, with
Laplace slightly edging out linear interpolation in F-score,
and achieving roughly 5% better sentence segmentation
accuracy. This is somewhat surprising, given that a
bigram model would be expected to hold richer
information about the most likely segmentation of
neighboring words.

On the following page are several graphs demonstrating
the segmentation performance of each algorithm
depending on the size of the corpus. Unsurprisingly, as
the corpus grew in size, probabilistic segmentation
accuracy improved. Maxmatch saw less variance in
performance, as it is not probabilistic but rather dictionary
presence-based.

	 5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50000 100000 150000 200000 250000 300000

Corpus Size (sentences)

Laplace Unigram Model
Segmentation Performance

Accuracy Precision Recall

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50000 100000 150000 200000 250000 300000

Corpus Size (sentences)

Maxmatch Unigram Model
Segmentation Performance

Accuracy Precision Recall

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50000 100000 150000 200000 250000 300000

Corpus Size (sentences)

Linear Interpolation Model
Segmentation Performance

Accuracy Precision Recall

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 50000 100000 150000 200000 250000 300000

Corpus Size (sentences)

Sentence Accuracy By Model
Type

Accuracy (Laplace)

Accuracy (Maxmatch)

Accuracy (Linear Interpolation)

	 6

It should be noted that the peculiar jump in accuracy for
the two probabilistic models between 150,000 and
175,000 sentences, and the flat performance between
there and 300,000 sentences, likely has to do with how the
body of data was partitioned for testing, which indicates
an oversight in experimental design. One unique random
shuffling was selected and utilized for all testing, but this
particular shuffling ended up being somewhat uneven.
Ideally, after the corpus was initially shuffled, each sub-
corpus of various sizes would have been a random
sampling of the entire corpus, rather than a simple
partition. Even then, a trend is clearly observable, just not
as smooth as one would like.

Though our best-performing Laplace model segments
around 99% of all words correctly, it makes certain
mistakes that reveal that it has a relatively limited
underlying model of the English language:

Ground truth: If nobody can, it may be on the property

Laplace: If nobody can, it maybe on the property

The Laplace model finds that “maybe” is a more likely
occurrence than “may be”. This is not a wrong assumption
in terms of pure probability; it simply does not have added
information about syntax to make a more informed
decision. This is a mistake that maxmatch would make as
well. A higher-order n-gram model may achieve better
results.

Other times, the Laplace model performs quite well,
making a single mistake that is not critical to sentence
meaning:

Ground truth: Two graduating university students offer

tips to first-year students

Laplace: Two graduating university students offer

tips to first - year students

Here, the only discrepancy is the hyphenation of “first-
year” in the ground truth sentence. This is a pattern that
could easily be patched up with an additional layer of
rule-based post processing after the segmentation
algorithm does its initial pass.

Overall, the Laplace model exhibited slightly stronger
performance on a large corpus, but achieved much better
precision and recall on a small corpus, which indicates
that a bigram model should only be used if a large corpus
can be found. In practice, the linear interpolation model
performed almost as well as the Laplace model and ran
roughly four times faster, so it would appear to be the
most practical choice of the algorithms exhibited.

Conclusion

In this project, we demonstrated an effective algorithm for
word segmentation that allows for plug-and-play
assessment of segmentation quality. Two measurements
of quality were assessed, with a Laplace-smoothed
unigram model faring the best, indicating that novel
probabilistic smoothing may be as or more important than
n-gram data. Most impressively, this level of performance
is achieved without making any language-specific
assumptions, instead only assuming that as unknown
words become especially long, their probabilities of
appearing fall. Tested on a French corpus of the same size,
the Laplace model saw an F-score of ~99 and sentence
accuracy of ~87%. Tested on Turkish, the model saw an
F-score of ~97, and a sentence accuracy of ~76%.

Segmentation accuracy could be improved by creating
stronger representations of phrase quality. Such
representations could include higher-order n-gram
models with more complex forms of smoothing, as well
as a model that includes data such as part-of-speech n-
gram likelihood on top of word likelihood.

We also would be curious to build a semi-supervised
algorithm on top of this functionality. Whenever a
segmentation is incorrect, there is rich information
available that shouldn’t be thrown away, but instead fed
back into the model to improve segmentation accuracy.
For example, an earlier version of the algorithm was often
mis-segmenting “Your” as “Y | our”. Such a mistake
should be recognized and penalized, such that the
likelihood of a future segmentation of “Y | our” decreases.
We imagine a rule-based transformation could take place
after the segmentation algorithm runs. This would require
finding one-to-many and many-to-one mappings of words
between the two sentences to construct rules, and
scanning sentences for strings of words to apply rules.
This could be accomplished in no worse than O(n2) time.

References

"Leipzig Corpora Collection Download Page."

Wortschatz. Leipzig University, n.d. Web. 05 May
2016.

Kun, Jeremy. "Word Segmentation, or

Makingsenseofthis." Math ∩ Programming. N.p., 15
Jan. 2012. Web. 04 May 2016.

Liu, Dan, Weiguo Fang, Hong Zhou, and Yan Li. "Bigram

Chinese Word Segmentation by Viterbi Algorithm."
2009 Sixth International Conference on Fuzzy
Systems and Knowledge Discovery (2009): n. pag.
Web. 04 May 2016.

