
	 1 

 
 

Probabilistic Language-Agnostic Word Segmentation 
 

Alex King 
Tufts University 

May 2016 
 

Abstract 
 

Accurate segmentation of text without spaces is an important task in natural language 
processing, particularly for languages written without spaces such as Chinese. We exhibit 
a dynamic programming algorithm to efficiently compute multiple segmentations of text, 
storing the best sub-segmentation at each step. We measure multiple metrics of assessing 
segmentation quality, finding that a unigram language model with Laplace smoothing 
slightly outperforms a bigram language model with linear interpolation smoothing. Using 
an English corpus of ~4 million tokens, we achieve an F-score of 99.25, segmenting over 
90% of sentences perfectly, with French and Turkish models performing nearly as well. 
This performance is significantly stronger than the baseline maximum matching approach. 

 
 
 
Introduction and Background 
 
In natural language processing, word segmentation is the 
process of breaking up a string of characters representing 
a phrase or sentence (“thetabledownthere”) into its 
proper constituent words or tokens (“the table down 
there”). For many eastern languages such as Chinese, 
which are written without spaces, efficient and accurate 
word segmentation is paramount for correct processing 
later in the pipeline. Word segmentation is not 
traditionally necessary in processing space-delimited 
languages like English; however, the process is becoming 
more applicable to all languages, with smartphone 
keyboard autocorrect becoming tolerant to strings of 
words typed without spaces. Word segmentation is 
generally easy for humans to do by eye, but it poses 
multiple challenges for computers. Exhaustive 
segmentation is extremely memory and time inefficient, 
as there are 2n-1 segmentations for any given string of n 
characters. In this paper, we exhibit a word segmentation 
algorithm that takes advantage of a probabilistic language 
model and dynamic programming to efficiently compute 
the most likely segmentation of a sentence. 
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Leipzig University, n.d. Web. 05 May 2016. 

Datasets Utilized 
 
Supervised word segmentation performance is extremely 
sensitive to the data provided. To that end, we sought to 
use large segmented sentence-based corpora so that n-
gram models could be generated as necessary. 
Unfortunately, it was challenging to find accessible large 
segmented corpora of unsegmented languages such as 
Chinese and Japanese. The largest segmented Chinese 
corpus easily accessed was roughly 10,000 sentences 
long, which is not large enough to build a strong 
probabilistic model of a language. Instead, this project 
focused on building a language-agnostic framework that 
could build a model for any language when given a 
properly segmented corpus. The Leipzig Corpora 
Collection1 was found to be the best resource for this, 
offering sentence-based corpora scraped from news 
websites and Wikipedia in over a dozen languages.  
 
English was used as a test language, utilizing a corpus of 
roughly 300,000 sentences. Sentences were tokenized 
using the Natural Language Toolkit (NLTK) 
word_tokenizer function. French and Turkish were 
informally tested afterwards, achieving very similar 
results to English. Sentences directly from the corpus 
acted as “ground truth” segmented sentences. Sentences 
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had spaces removed before being passed to the 
segmentation algorithm. The corpus comes alphabetized, 
but it was shuffled before being partitioned into training 
and test segments. 
 
Here is one example sentence from the English corpus: 
“Mention must be made of bass-baritone Nicolas Testé’s 
superbly robust singing as Raimondo, here portrayed as 
a spiritual advisor to Enrico Ashton.” This sentence 
exhibits several proper nouns that will be cataloged by our 
language model. 
 
Baseline Algorithms 
 
There are two straightforward mechanisms to segment 
text that share considerable algorithmic similarity, but 
differ greatly in performance. The maximum matching or 
maxmatch algorithm reads a string of unsegmented text 
with a pointer beginning at the end of the string, checking 
if the current string is a word in the language’s dictionary. 
If so, a space is inserted and the process is repeated. If not, 
the pointer is moved to the left by one and the process is 
repeated. If no word is found, a single character token is 
created. In practice, this algorithm will always find the 
longest word that can be made before inserting a space, 
hence the name. Our example sentence 
“thetabledownthere” would be segmented as “theta bled 
own there”.  
 
Minimum matching or minmatch works similarly, but 
instead of starting the pointer at the end of the string, it is 
started at the beginning. This always finds the shortest 
word that can be made before inserting a space. 
Maxmatch is a worthwhile baseline algorithm that 
achieves moderately high precision and recall scores for 
words. Minmatch, though very similar to maxmatch, does 
not fare nearly as well. This is understandable given that 
many prefixes of longer words are also words themselves; 
our example sentence would be segmented as “the tab led 
ow n the re”. For this project, maxmatch was used as the 
baseline segmentation algorithm. 
 
Our Method 
 
Maxmatch’s beauty is in its convenience and speed: given 
a dictionary of a language, maxmatch can segment text in 
linear time with respect to the length of the input. It does 
not rely on a precomputed model, so it can be 
implemented and integrated quickly. However, its main 
flaw is its greed: it always picks the longest word at each 
opportunity, even when the longest word is extremely 
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Math ∩ Programming. N.p., 15 Jan. 2012. Web. 04 May 
2016. 

uncommon, throwing off the next word’s segmentation as 
well. The “theta bled own there” example is one such 
example in English, where “theta” is picked as the first 
word of the sentence, even though it is many, many orders 
of magnitude less common than the most common word 
in English, “the”. It also faces a certain conundrum in its 
definition of a dictionary: if it uses a dictionary defined 
by a real-world corpus, it may mistakenly recognize 
longer words than it should, because those words appear 
as slang or casual compound words in the corpus. 
Conversely, if it uses an official language dictionary, it 
will not fare nearly as well at recognizing uncommon 
proper nouns, affecting overall accuracy. 
 
An ideal algorithm compares multiple segmentations of 
the same text and picks the one that is considered the best. 
However, this is not trivially accomplished; a given string 
of n characters will have 2n-1 possible segmentations, so 
runtime can grow to be O(2n) if implemented naively.  
Dynamic programming can improve on this. If we can 
define the segmentation problem such that an optimal 
solution is composed of optimal solutions to subsets of the 
original problem, we can store the solutions to the subsets 
for use later in the algorithm. For this project, we used the 
following recursive definition of the best segmentation of 
string s, derived from a recursive algorithm described by 
Jeremy Kun2: 
 

 
This definition states that the best segmentation of a string 
of length n will be the highest quality segmentation 
among n choices. For example, for the short English string 
“weare”, the best segmentation will be the highest quality 
segmentation of the following: 
 

• “w” | seg(“eare”) 
• “we” | seg(“are”) 
• “wea” | seg(“re”) 
• “wear” | seg(“e”) 
• “weare” 

 
This definition relies on recursively calling the function 
on substrings of the original. This is where the dynamic 
programming algorithm helps: by iteratively calculating 
the best segmentation of increasingly long substrings of s 
and storing each one, the algorithm becomes polynomial 
in runtime rather than exponential. In the case of 
“weare”, the following steps would be taken to segment 
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the entire string. The bold selection indicates the highest 
scoring segmentation, the measurement of which will be 
discussed below. 
 
1. seg(“e”) = “e” 
2. seg(“re”) = “r | e”, “re” 
3. seg(“are”) = “a | r | e”, “ar | e”, “are” 
4. seg(“eare”) = “e | are”, “ea | r | e”, “ear | e”, “eare” 
5. seg(“weare”) = “w | e | are”, “we | are”, “wea | r | e”, 

“wear | e”, “weare” 
 

The algorithm in Python is not much harder to read than 
pseudocode, so the Python code is exhibited below. 
Though the inspiration for this algorithm comes from 
Jeremy Kun’s recursive segmentation algorithm, the 
dynamic programming algorithm was implemented, 
tested and tweaked independently. 
 
def segment_string(string): 
 
    length = len(string) 
    table = [0 for i in range(length)]  
    for row in range(length - 1, -1, -1): 
 
        segment = string[row:length] 
 
        segs =  
            [[segment[:i+1]] +  
             table[i + row + 1] 
             for i in range(len(segment) - 1)] 
 
        segs.append([segment]) 
 
        scores =  
            [quality(sent)  
             for sent in segs] 
 
        table[row] =  
            segs[scores.index(max(scores))] 
 
    return table[0] 
 
This algorithm allows us to efficiently compute many 
different segmentations of a string, which offers promise 
over maxmatch. However, its performance is completely 
dictated by the performance of the quality function, the 
function that tells us how good or how likely a given 
segmentation is. To measure quality, we compared the 
performance of two different probabilistic language 
model structures: one smoothed with Laplace smoothing, 
and another smoothed with linear interpolation. 
 
Quality Method 1: Laplace-Smoothed Language 
Model 
 
An n-gram language model stores probabilities of 
sequences of n words appearing in the language. Laplace 
smoothing adds one (or a smaller constant) occurrence for 
every n-gram in a language model, such that n-grams not 
appearing in the corpus will not have a probability of zero, 

but instead, a very small one. Some sort of smoothing for 
unseen tokens is crucial, because without it, the quality 
function cannot easily reconcile an unseen token: if it 
chooses to include the zero probability, the probability of 
an entire segmentation immediately goes to zero. 
Conversely, if the probability is ignored, there is no 
penalty for including a token that may very well be 
uncommon, leading to poor segmentation behavior. 
 
Unfortunately, using n-grams with n > 1 is not especially 
practical for Laplace smoothing, as bigrams are extremely 
sparse. Computing quality based on smoothed bigrams 
exhibited very poor performance, because many bigrams 
were never observed, so all quality scores were very low. 
Because of this, we instead chose to use Laplace 
smoothing on a unigram model, such that quality was 
defined by the sum of log probabilities of each unigram in 
the segmentation. 
 
In tweaking the model, it was clear that the probability of 
unknown tokens had to be reduced in two ways. First, 
based on the size of the corpus and the size of the 
languages they represented, counting each unseen token 
as occurring once in the model was far too high of a 
probability to achieve good results. Empirically, we were 
able to change this count of 1 to a very small count of     
10-40 and achieve better results. Second, the quality of a 
very long unknown word needed to be penalized, 
otherwise a long string of unknown characters would 
often be considered better than a string of short, 
segmented characters with probabilities compounded 
together. Jeremy Kun’s article recommended penalizing 
unknown tokens by their length, and we found that 
penalizing all unknown tokens by dividing their (pre-log) 
probability by 10len(s) achieved the desired effect. 
 
Quality Method 2: Linear Interpolation-Smoothed 
Language Model 
 
We also evaluated quality using a bigram model 
smoothed with linear interpolation. This method allows 
us to take advantage of the richer data inherent in a bigram 
model, but it fares better at smoothing than Laplace 
smoothing, because any unseen bigram is instead judged 
by the probability of its second unigram. We predicted 
that this method would lead to stronger segmentation 
accuracy, because the bigram model would be better at 
discerning segmentation between neighboring words. 
Lambda values for interpolation were calculated using the 
deleted interpolation algorithm using a held out corpus. 
The lambda values gave roughly 70% importance to 
bigram probability and 30% importance to second-
unigram probability. Segmentation quality was defined 
by the sum of log probabilities for each bigram in the 
segmentation.  
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Algorithmic Complexity 
 
Building a probabilistic model takes O(|C|) time, where 
|C| is the corpus size in words. The segmentation 
algorithm itself, on a string of length n, computes roughly 
n segmentations of length n n times, where each 
segmentation must have a quality calculated, taking O(n) 
time. Therefore, the probabilistic dynamic programming 
algorithm runs in O(n3) time. Though this is considerably 
worse than maxmatch, sentence breaks are our friend. 
Sentence length does not typically grow without bound, 
so O(n3) performance on sentences of reasonable length 
is plenty fast in practice. 
 
Evaluation 
 
To assess the quality of a segmented sentence, full 
sentence segmentation accuracy was computed, along 
with precision, recall, and F-score of individual words in 
the sentence. Because it is very possible for long 
sentences to have a single incorrectly segmented word or 
word pair, full sentence accuracy is a much harder statistic 
to bring up in value. However, precision, recall, and F-
score represent a fairer evaluation of the quality of 
segmentation, representing roughly what percentage of 
words are correctly segmented overall. Definitions of 
precision and recall with respect to segmented sentences 
were taken from “Bigram Chinese Word Segmentation by 
Viterbi Algorithm” by Dan Lieu et al.3 
 
Calculating precision and recall of a segmented sentence 
based on ground truth data was a fun algorithm to build in 
itself, and thankfully not unreasonably difficult or 
inefficient. It’s necessary to measure how many words in 
the ground truth sentence are correctly identified in the 
segmented sentence, but it isn’t as easy as exhaustively 
searching for presence; order and relative position matter. 
Consider the following sentences: 
 
Ground truth:  The table down there 
 
Segmented 1: Theta bled own there 
 
Segmented 2: The tab led ow n the re 
 
Comparing either of the machine-segmented sentences to 
the ground truth sentence requires walking each sentence 
in parallel, beginning at the first word, and seeing if the 
most recently segmented words are the same, and that the 
pointer for each sentence is at the same overall position in 

																																																								
3 Liu, Dan, Weiguo Fang, Hong Zhou, and Yan Li. "Bigram 

Chinese Word Segmentation by Viterbi Algorithm." 2009 
Sixth International Conference on Fuzzy Systems and 
Knowledge Discovery (2009): n. pag. Web. 4 May 2016. 

each string. This algorithm was devised and implemented 
independently and is documented in the 
WordsCorrect function in the segmentation module. 
 
Results 
 
Results are summarized in the table below with the best 
performances bolded. All measurements were taken with 
a training corpus of 290,000 sentences and a test set of 
5,000 sentences. M denotes the maxmatch algorithm, LI 
denotes the linear interpolation-smoothed model, and LP 
denotes the Laplace-smoothed model. 
 

 Accuracy Precision Recall F-Score Time 
(s) 

M 18.68% 83.22% 78.54% 80.81 3.99 
LI 84.98% 98.56% 98.94% 98.74 110.51 
LP 90.16% 99.13% 99.37% 99.25 462.43 

 
Maxmatch exhibited significantly poorer sentence 
accuracy (18.68%) than the probabilistic methods, but its 
precision and recall scores were acceptable, with an F-
score of over 80. This demonstrates that accuracy 
improves in a delayed fashion relative to precision and 
recall. Maxmatch’s main advantage is that it runs over 25 
times faster than the linear interpolation method and over 
100 times faster than the Laplace method. This was 
expected; it is not only a linear time algorithm, but it 
avoids the numerical operations inherent in probabilistic 
comparison. This also would explain why Laplace 
smoothing is considerably slower than linear 
interpolation; Laplace smoothing, with its penalization of 
long length, computes more numbers with time-intensive 
exponent and division operations. 
 
Laplace smoothing and linear interpolation both 
demonstrated very similar performance curves, with 
Laplace slightly edging out linear interpolation in F-score, 
and achieving roughly 5% better sentence segmentation 
accuracy. This is somewhat surprising, given that a 
bigram model would be expected to hold richer 
information about the most likely segmentation of 
neighboring words. 
 
On the following page are several graphs demonstrating 
the segmentation performance of each algorithm 
depending on the size of the corpus. Unsurprisingly, as 
the corpus grew in size, probabilistic segmentation 
accuracy improved. Maxmatch saw less variance in 
performance, as it is not probabilistic but rather dictionary 
presence-based. 
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It should be noted that the peculiar jump in accuracy for 
the two probabilistic models between 150,000 and 
175,000 sentences, and the flat performance between 
there and 300,000 sentences, likely has to do with how the 
body of data was partitioned for testing, which indicates 
an oversight in experimental design. One unique random 
shuffling was selected and utilized for all testing, but this 
particular shuffling ended up being somewhat uneven. 
Ideally, after the corpus was initially shuffled, each sub-
corpus of various sizes would have been a random 
sampling of the entire corpus, rather than a simple 
partition. Even then, a trend is clearly observable, just not 
as smooth as one would like. 
 
Though our best-performing Laplace model segments 
around 99% of all words correctly, it makes certain 
mistakes that reveal that it has a relatively limited 
underlying model of the English language: 
 
Ground truth:  If nobody can, it may be on the property 
 
Laplace:  If nobody can, it maybe on the property 
 
The Laplace model finds that “maybe” is a more likely 
occurrence than “may be”. This is not a wrong assumption 
in terms of pure probability; it simply does not have added 
information about syntax to make a more informed 
decision. This is a mistake that maxmatch would make as 
well. A higher-order n-gram model may achieve better 
results. 
 
Other times, the Laplace model performs quite well, 
making a single mistake that is not critical to sentence 
meaning: 
 
Ground truth:  Two graduating university students offer 

tips to first-year students  
 
Laplace:  Two graduating university students offer 

tips to first - year students  
 
Here, the only discrepancy is the hyphenation of “first-
year” in the ground truth sentence. This is a pattern that 
could easily be patched up with an additional layer of 
rule-based post processing after the segmentation 
algorithm does its initial pass. 
 
Overall, the Laplace model exhibited slightly stronger 
performance on a large corpus, but achieved much better 
precision and recall on a small corpus, which indicates 
that a bigram model should only be used if a large corpus 
can be found. In practice, the linear interpolation model 
performed almost as well as the Laplace model and ran 
roughly four times faster, so it would appear to be the 
most practical choice of the algorithms exhibited. 

Conclusion 
 
In this project, we demonstrated an effective algorithm for 
word segmentation that allows for plug-and-play 
assessment of segmentation quality. Two measurements 
of quality were assessed, with a Laplace-smoothed 
unigram model faring the best, indicating that novel 
probabilistic smoothing may be as or more important than 
n-gram data. Most impressively, this level of performance 
is achieved without making any language-specific 
assumptions, instead only assuming that as unknown 
words become especially long, their probabilities of 
appearing fall. Tested on a French corpus of the same size, 
the Laplace model saw an F-score of ~99 and sentence 
accuracy of ~87%. Tested on Turkish, the model saw an 
F-score of ~97, and a sentence accuracy of ~76%. 
 
Segmentation accuracy could be improved by creating 
stronger representations of phrase quality. Such 
representations could include higher-order n-gram 
models with more complex forms of smoothing, as well 
as a model that includes data such as part-of-speech n-
gram likelihood on top of word likelihood.  
 
We also would be curious to build a semi-supervised 
algorithm on top of this functionality. Whenever a 
segmentation is incorrect, there is rich information 
available that shouldn’t be thrown away, but instead fed 
back into the model to improve segmentation accuracy. 
For example, an earlier version of the algorithm was often 
mis-segmenting “Your” as “Y | our”. Such a mistake 
should be recognized and penalized, such that the 
likelihood of a future segmentation of “Y | our” decreases. 
We imagine a rule-based transformation could take place 
after the segmentation algorithm runs. This would require 
finding one-to-many and many-to-one mappings of words 
between the two sentences to construct rules, and 
scanning sentences for strings of words to apply rules. 
This could be accomplished in no worse than O(n2) time. 
 
References 
 
"Leipzig Corpora Collection Download Page." 

Wortschatz. Leipzig University, n.d. Web. 05 May 
2016. 

 
Kun, Jeremy. "Word Segmentation, or 

Makingsenseofthis." Math ∩ Programming. N.p., 15 
Jan. 2012. Web. 04 May 2016. 

 
Liu, Dan, Weiguo Fang, Hong Zhou, and Yan Li. "Bigram 

Chinese Word Segmentation by Viterbi Algorithm." 
2009 Sixth International Conference on Fuzzy 
Systems and Knowledge Discovery (2009): n. pag. 
Web. 04 May 2016. 


